Analytical formulas for calculating the extremal ranks and inertias of A + BXB∗ when X is a fixed-rank Hermitian matrix

نویسنده

  • Yongge Tian
چکیده

The rank of a matrix and the inertia of a square matrix are two of the most generic concepts in matrix theory for describing the dimension of the row/column vector space and the sign distribution of the eigenvalues of the matrix. Matrix rank and inertia optimization problems are a class of discontinuous optimization problems, in which decision variables are matrices running over certain matrix sets, while the ranks and inertias of the variable matrices are taken as integer-valued objective functions. In this paper, we first establish several groups of explicit formulas for calculating the maximal and minimal ranks and inertias of matrix expression A+X subject to a Hermitian matrix X that satisfies a fixed-rank and semi-definiteness restrictions by using some discrete and matrix decomposition methods. We then derive formulas for calculating the maximal and minimal ranks and inertias of matrix expression A+BXB∗ subject to a Hermitian matrix X that satisfies a fixed-rank and semi-definiteness restrictions and use the formulas obtained to characterize behaviors of A + BXB∗.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytical formulas for calculating the extremal ranks of the matrix-valued function A +BXC when the rank of X is fixed

Analytical formulas are established for calculating the maximal and minimal ranks of the matrix-valued function A+BXC when the rank of X is fixed. Some consequences are also given.

متن کامل

Optimization problems on the rank and inertia of the Hermitian matrix expression A−BX − (BX)∗ with applications

We give in this paper some closed-form formulas for the maximal and minimal values of the rank and inertia of the Hermitian matrix expression A − BX ± (BX)∗ with respect to a variable matrix X. As applications, we derive the extremal values of the ranks/inertias of the matrices X and X ± X∗, where X is a (Hermitian) solution to the matrix equation AXB = C, respectively, and give necessary and s...

متن کامل

Analytical formulas for calculating extremal ranks and inertias of quadratic matrix-valued functions and their applications

A group of analytical formulas formulas for calculating the global maximal and minimal ranks and inertias of the quadratic matrix-valued function φ(X) = (AXB + C )M(AXB + C) +D are established and their consequences are presented, where A, B, C and D are given complex matrices with A and C Hermitian. As applications, necessary and sufficient conditions for the two general quadratic matrix-value...

متن کامل

Max-min optimizations on the rank and inertia of a linear Hermitian matrix expression subject to range, rank and definiteness restrictions

The inertia of a Hermitian matrix is defined to be a triplet composed by the numbers of the positive, negative and zero eigenvalues of the matrix counted with multiplicities, respectively. In this paper, we give various closed-form formulas for the maximal and minimal values for the rank and inertia of the Hermitian expression A + X, where A is a given Hermitian matrix and X is a variable Hermi...

متن کامل

Investigation on the Hermitian matrix expression‎ ‎subject to some consistent equations

In this paper‎, ‎we study the extremal‎ ‎ranks and inertias of the Hermitian matrix expression $$‎ ‎f(X,Y)=C_{4}-B_{4}Y-(B_{4}Y)^{*}-A_{4}XA_{4}^{*},$$ where $C_{4}$ is‎ ‎Hermitian‎, ‎$*$ denotes the conjugate transpose‎, ‎$X$ and $Y$ satisfy‎ ‎the following consistent system of matrix equations $A_{3}Y=C_{3}‎, ‎A_{1}X=C_{1},XB_{1}=D_{1},A_{2}XA_{2}^{*}=C_{2},X=X^{*}.$ As‎ ‎consequences‎, ‎we g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013